2 research outputs found

    A New Hybrid Method of IPv6 Addressing in the Internet of Things

    Full text link
    Humans have always been seeking greater control over their surrounding objects. Today, with the help of Internet of Things (IoT), we can fulfill this goal. In order for objects to be connected to the internet, they should have an address, so that they can be detected and tracked. Since the number of these objects are very large and never stop growing, addressing space should be used, which can respond to this number of objects. In this regard, the best option is IPv6. Addressing has different methods, the most important of which are introduced in this paper. The method presented in this paper is a hybrid addressing method which uses EPC and ONS IP. The method proposed in this paper provides a unique and hierarchical IPv6 address for each object. This method is simple and does not require additional hardware for implantation. Further, the addressing time of this method is short while its scalability is high, and is compatible with different EPC standards

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access
    corecore